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Summarize parameterization aspects of the recent publication:

Moncrieff, M.W., C. Liu, and P. Bogenschutz, 2017: Simulation, modeling and dynamically
based parameterization of organized tropical convection for Global Climate Models. J.
Atmos. Sci., 74, 1363-1380, doi:10.1175/JAS-D-16-0166.1.

supported by a NASA ROSES grant between NCAR, CCNY and GISS: Diagnostic Analysis
and Cloud-System Modeling of Organized Tropical Convection in the YOTC - ECMWF
Global Database to Develop Climate Model Parameterizations



Preamble

Atmospheric convection observed to organize into “coherent structures”, a dynamical
property linked to mean-state conditions notably vertical shear.

But this feature is not treated by traditional convective parameterizations.
Coherent structures are fundamental to fluids & plasmas.

Seek the simplest possible (minimalist) parameterization for organized convection
represented by coherent structures based on observationally verified nonlinear

dynamical models

Focus on eastward- propagating tropical systems

a) Cumulus Field ¢) Coherent Structure in Cumulus Field
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Fraction of Rainfall in MCS (TRMM)
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Precipitable Water from TRMM data for YOTC (La Nina Conditions)

Morphed composite: 2003-01-22 00:00:00 UTC
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Multiscale Coherent Structure Parameterization (MCSP)

a) Cumulus Field c) Coherent Structure in Cumulus Field
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Convective-Mesoscale Anatomy of MCS
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2nd Baroclinic Organized Momentum Transport
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Momentum Transport Parameterization
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1st & 2"d Baroclinic Modes of Convective Heating

Cumulus
heating 1st baroclinic mode 2" baroclinc mode
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Lagrangian Slant-wise
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Multiscale self-similarity assumption: Convective heating proportional to vertical velocity




Experiments with CAM 5.5 GCM

Organized convection represented by slantwise overturning affects
the large-scale distribution of precipitation and tropical-waves, with
particular attention to regions identified by the TRMM (e.g., ITCZ,
SPCZ, Maritime Continent, warm-pool) concerning MCS activity

Address issues in the minimalist way focused on 2"d baroclinic
tendencies:

i) ‘Top-heavy’ convective heating
i) Organized momentum transport

Analyze years 2-8 of 10-year CAM 5.5 simulations



MCSP Effects on Precipitation

Momentum Transport
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Precipitation Rate (15S -15N)

CAM 5.5 Control

MCSP: 2" Baroclinic Heating MCSP: Momentum Transport



Zonal Wind at 200 hPa (15S — 15N)

MCSP: 2" Baroclinic Momentum Transport ( a3 = 1ms~! day™1) MCSP: 2" Baroclinic Heating (a; = 1)



Conclusions

Multiscale Coherent Structure Parameterization (MCSP) with slantwise overturning as the
transport module adds mesoscale organization to traditional convective parameterization.

Multiscale self-similarity of squall lines, MCSs, supercluster etc. stems from
proportionality between convective heating and cnvective vertical velocity

MCSP demonstrates the global role of organized convection
Consisting of a few lines of code, MCSP is useable for long climate simulations

Coherent response to 2nd baroclinic heating & momentum transport in Indian Ocean,
Maritime Continent and Tropical Western Pacific, ITCZ -- broadly consistent with TRMM

Coherent structure paradigm implies new scale-selection mechanisms for organized
convection at meso-to-synoptic scales

Much more remains to be done, e.g.,
- Relationship to Khouider-Majda multicloud parameterization (MCP)
- Analysis of 9 km ECMWEF IFS Virtual Global Field Campaign database
for PPP & YMC in the July 2017-July 2019 period.
- Effects outside the Warm Pool
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